Presentation Title

Extracting Anticancer Antibiotics from the Soil

Start Date

November 2016

End Date

November 2016

Location

HUB 302-52

Type of Presentation

Poster

Abstract

Cancer is one of the leading causes of death in the world, killing over 8 million people a year (World Health Organization, 2015). Many successful anticancer compounds are produced by terrestrial plants, marine plants, slime molds, and microorganisms isolated from soils (Cragg & Pezzuto, 2015; Kahn, et al., 2011). Soil is abundant with microorganisms that produce chemical weapons, such as antibiotics, in order to compete for resources by killing or inhibiting the growth of other microorganisms (Hibbing, et al., 2010). In the search for novel anticancer compounds, I isolated microorganisms from soil associated with the roots of a pomegranate tree in California Lutheran University’s very own SEEd Garden and then screened for the inhibition of cancer cell growth and induced cancer cell death. First, the soil sample was serially diluted, plated on glycerol yeast extract media, and incubated at 25°C for 3-5 days. Two hundred isolates were organized and grown on master plates. Each colony and the immediate surrounding media was cut out of the plate, placed in a microfuge tube, and frozen at -20°C. To extract potential antibiotics, the agar plugs were incubated at 4°C in 1.5 ml of RPMI media for 24 hours. Each extract was filtered twice through a 0.22 µm filter and then added to U937 cancer cells (male histiocytic lymphoma cells) (Chanput et al., 2015). To screen the extracts for anticancer effects, U937 cells were counted using hemocytometry to determine cell concentration. Most colony extracts had no noticeable effect on U937 cell growth or death. One of the screened colonies, #62, reduced U937 cell concentration relative to negative controls. In future work, extract toxicity to non-cancer cells will be tested against 3T3 mouse fibroblast cells (American Type Culture Collection, 2016). If non-toxic to non-cancer cells, the anticancer compound can be further isolated from cell extracts and identified.

This document is currently not available here.

Share

COinS
 
Nov 12th, 1:00 PM Nov 12th, 2:00 PM

Extracting Anticancer Antibiotics from the Soil

HUB 302-52

Cancer is one of the leading causes of death in the world, killing over 8 million people a year (World Health Organization, 2015). Many successful anticancer compounds are produced by terrestrial plants, marine plants, slime molds, and microorganisms isolated from soils (Cragg & Pezzuto, 2015; Kahn, et al., 2011). Soil is abundant with microorganisms that produce chemical weapons, such as antibiotics, in order to compete for resources by killing or inhibiting the growth of other microorganisms (Hibbing, et al., 2010). In the search for novel anticancer compounds, I isolated microorganisms from soil associated with the roots of a pomegranate tree in California Lutheran University’s very own SEEd Garden and then screened for the inhibition of cancer cell growth and induced cancer cell death. First, the soil sample was serially diluted, plated on glycerol yeast extract media, and incubated at 25°C for 3-5 days. Two hundred isolates were organized and grown on master plates. Each colony and the immediate surrounding media was cut out of the plate, placed in a microfuge tube, and frozen at -20°C. To extract potential antibiotics, the agar plugs were incubated at 4°C in 1.5 ml of RPMI media for 24 hours. Each extract was filtered twice through a 0.22 µm filter and then added to U937 cancer cells (male histiocytic lymphoma cells) (Chanput et al., 2015). To screen the extracts for anticancer effects, U937 cells were counted using hemocytometry to determine cell concentration. Most colony extracts had no noticeable effect on U937 cell growth or death. One of the screened colonies, #62, reduced U937 cell concentration relative to negative controls. In future work, extract toxicity to non-cancer cells will be tested against 3T3 mouse fibroblast cells (American Type Culture Collection, 2016). If non-toxic to non-cancer cells, the anticancer compound can be further isolated from cell extracts and identified.